
Exploring Shared-memory Optimizations for an
Unstructured Mesh CFD Application on Modern

Parallel Systems

Dheevatsa Mudigere∗, Srinivas Sridharan∗, Anand Deshpande∗,
Jongsoo Park†, Alexander Heinecke†, Mikhail Smelyanskiy†, Bharat Kaul∗, Pradeep Dubey†,

Dinesh Kaushik‡, David Keyes§

∗Parallel Computing Lab, Intel Corporation, Bangalore, India
†Parallel Computing Lab, Intel Corporation, Santa Clara, CA

‡Qatar Foundation, Doha, Qatar
§King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract—In this work, we revisit the 1999 Gordon Bell
Prize winning PETSc-FUN3D aerodynamics code, extending it
with highly-tuned shared-memory parallelization and detailed
performance analysis on modern highly parallel architectures. An
unstructured-grid implicit flow solver, which forms the backbone
of computational aerodynamics, poses particular challenges due
to its large irregular working sets, unstructured memory accesses,
and variable/limited amount of parallelism. This code, based on
a domain decomposition approach, exposes tradeoffs between the
number of threads assigned to each MPI-rank subdomain, and
the total number of domains. By applying several algorithm-
and architecture-aware optimization techniques for unstructured
grids, we show a 6.9X speed-up in performance on a single-
node Intel R© Xeon

TM1 E5 2690v2 processor relative to the out-
of-the-box compilation. Our scaling studies on TACC Stampede
supercomputer show that our optimizations continue to provide
performance benefits over baseline implementation as we scale
up to 256 nodes.

Keywords—CFD, Krylov Solver, Multi-core, OpenMP+MPI

I. INTRODUCTION

Computational aerodynamics is both an important and a
representative workload for high performance computing, fre-
quently employed in benchmarking and tuning hardware and
software-programming environments. Scaling an unstructured-
grid implicit flow solver to a large number of distributed nodes
has been a staple of HPC since the ascent of commercial
parallel processing in the mid-1980’s. The performance of
these codes have been pushed beyond tens of thousands of
processors through scalable iterative methods, such as Newton-
Krylov with domain-decomposed multilevel preconditioners,
which sustain a fixed ratio of neighbor communication to

1Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in
the U.S. and/or other countries. Software and workloads used in performance
tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to
http://www.intel.com/performance

bulk processing while the impact of global synchronization
grows slowly under careful load balancing. However, the
fundamental design challenges faced by conventional uni-
processor architectures over the past decade compelled the
industry to undergo a tectonic shift in the direction of multi-
and many-core architectures. Practitioners are now forced to
look at scaling their workloads not only across distributed
memories, but also across large numbers of cores of modern
massively threaded single shared-memory nodes.

The earliest single node studies have naturally focused on
structured grids. However, an unstructured-grid solver com-
prises of a diverse range of compute- and memory-bound ker-
nels, with variable degree of parallelism, which makes achiev-
ing high single-node parallel efficiency a very challenging task.
Single-node optimization for unstructured grid applications is
relatively nascent and actively being studied. Duffy et al. [1],
have evaluated leveraging fine-grained parallelism with early
GPUs for the NASA FUN3D code, specifically accelerating
only the point implicit solver of FUN3D on GPUs.

In this work, we extend the investigation of computational
aerodynamics community into strong shared-memory scaling
by using the PETSc version of FUN3D (referred to as PETSc-
FUN3D in this paper) as a case study. PETSc-FUN3D is
chosen since its performance was modeled and measured in a
1999 Gordon Bell Prize paper [2], [3] and revisited in the early
days of many-core processing [4]. We study an incompressible
flow solver over an aircraft wing geometry, meshed using
an unstructured grid as our data set. Unstructured-grid codes
differ from structured grid codes profoundly in irregular data
accesses, a harder to capture working set, as well as variable
and limited amount of instruction-, vector- and thread-level
parallelism.

This paper makes the following contributions:

• We demonstrate a number of shared memory optimization
techniques applied to key computational kernels, and show
performance benefits both at kernel and application level.
We achieve a 6.9X increase in performance for the full
application on a single-node Intel Xeon E5 2690 processor,
relative to the base version.

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.114

723

• Further, we show that our optimizations continue to provide
performance benefits as we scale the application to multiple
nodes and establish the scaling limits of the Netwon-Krylov-
Schwarz solver on today’s highly parallel architectures.

• We evaluate and compare the explicit (MPI-only) paral-
lelization and hybrid (MPI+OpenMP) parallelization ap-
proaches, and summarize the findings towards extracting
both coarse- and fine- grained parallelism for a complex
and large-scale (CFD) application such as PETSc-FUN3D.

• We carry our performance optimization work within the
PETSc [5]–[7] framework, a widely used solver library,
thus making benefits of our work extensible to the larger
CFD community. We propose several improvements to the
PETSC communication routines to further improve OpenMP
scalability.

This paper is organized as follows. We begin with back-
ground information on the discretization scheme, governing
equations and preconditioned Newton-Krylov implicit solver in
Section 2. In Section 3, we describe the main computational
kernels and their optimization challenges. In Section 4, we
describe the experimental setup and the dataset used, as well
as the performance profile of the baseline code. We describe
various key optimizations and performance results for the main
computational kernels in Section 5. Section 6 contains single-
node as well as multi-node optimization results for the full
PETSc-FUN3D application. We conclude in Section 7 along
with our plan for future work.

II. BACKGROUND

A. Control-volume Discretization for Euler Flow

FUN3D is a tetrahedral, vertex-centered unstructured mesh
code for solving the compressible and incompressible Euler
and Navier-Stokes equations originally developed by W.K.
Anderson of the NASA Langley Research Center [8], [9].
FUN3D has been used for design optimization of airplanes,
automobiles, and submarines with irregular meshes comprising
several million mesh points. Our work is based on the PETSc
version of FUN3D, namely the PETSc-FUN3D, although here-
after in this article we refer to it as just FUN3D. Our interest
in this article is limited to the performance optimization of
the forward solver in the inviscid incompressible regime of
an ideal gas. This regime poses the greatest challenge for
high performance, since it reduces the physics to the min-
imum complexity. When compressibility, viscosity, and real
gas effects are activated, the computation becomes more flop-
intensive without significantly expanding the memory traffic
or communication, and without any fundamental change in
the solution algorithm beyond parameter tuning.

1) Discretization: In space, FUN3D uses a control volume
discretization with a variable-order flux-difference Roe scheme
[10] for approximating the convective fluxes and a Galerkin
discretization for the viscous terms. The control volumes are
centered on the vertices and their boundaries ∂V are formed
by a dual mesh with faces that bisect the edges between the
vertices, such that each volume element contains all of the
points closest to the vertex at its center. For incompressible
flow in three dimensions, computing the limited numerical
fluxes requires solving a 3×3 eigen-system on each face of the
volume element. (For compressible flows in three dimensions,

this eigen-system becomes 5×5.) This discretization which is
widely used in CFD codes [8] is relatively insensitive to mesh
stretching and is second-order accurate in space, in regions
of smooth meshes and solutions. For time discretization, the
classic CFD pseudo-transient time-stepping due to Mulder and
Van Leer [11] is used.

2) Governing Equations: The incompressible governing
equations employed in FUN3D are written in integral form
[8] as

V
∂q

∂t
+

∫
∂V

fi · n̂dA−
∫
∂V

fv · n̂dA = 0 (1)

where q is the vector of state variables, q = (p, u, v, w)T ,
the inviscid flux is fi · n̂ = (βΘ, uΘ+ nxp, vΘ+ nyp, wΘ+
nzp)

T and the viscous flux is fv · n̂ = (0, nxτxx + nyτxy +
nzτxz, nxτxy + nyτyy + nzτyz, nxτxz + nyτyz + nzτzz)

T ,

where, in turn, (u, v, w) are the velocity components in the
three Cartesian directions, p is the pressure, β is an artificial
compressibility parameter, and Θ ≡ nxu + nyv + nzw is the
velocity normal to the surface of the control volume. The Euler
setting omits the viscous fluxes.

B. Parallel Implicit Nonlinear Solver: Newton-Krylov-
Schwarz (NKS)

Implicit solvers are required for problems that are transient
but temporally stiff or steady-state. In the former case, we
set up an implicit problem on each time step, which can
be much larger than the largest time step that satisfies the
Courant-Friedrichs-Lewy stability restriction. In the latter case,
for nonlinear problems, we also set up a series of implicit
problems on time steps chosen artificially as nonlinear con-
tinuation parameters, in order to attempt to "globalize" the
convergence of Newton’s method or obtain convergence from
an arbitrary initial condition. As the time step approaches
infinity, the steady-state solution is achieved. In either case,
the typical implicit step has the form:

F(ul) ≡ 1

Δtl
(ul − ul−1) + f(ul) = 0 (2)

where Δtl → ∞ as l → ∞, ul represents the fully coupled
vector of unknowns, and f(ul) is the vector of nonlinear
conservation laws arising from the spatial discretization of the
governing equations. An initial guess, u0, is supplied and each
member of the sequence of nonlinear problems, l = 1, 2, . . . ,
is solved with an inexact Newton method for ul using inner
iteration k inside of the time step, e.g.:

‖ F(ul,k−1) + F′(ul,k−1)δul,k ‖< ε (3)

followed by ul,k = ul,k−1+δul,k, k = 1, 2, . . . , until satisfied
for sufficiently small ε. In turn, the linear systems Ax = b ,
where x = δul,k,b = −F(ul,k−1), and A = F′(ul,k−1),
for the Newton corrections are solved with a Krylov method.
In our case, we rely directly on matrix-free Jacobian-vector
product operations to approximate the action of the Jacobian
matrix on Krylov vectors, as described in [12]. The Krylov

724

method needs to be preconditioned for acceptable inner iter-
ation convergence rates, and the preconditioning can be the
“make-or-break” feature of an implicit code. A good precon-
ditioner saves time and space by permitting fewer iterations in
the Krylov loop and smaller storage for the Krylov subspace.
An additive Schwarz preconditioner can accomplish this in a
concurrent, subdomain-by-subdomain manner, with an approx-
imate solve in each subdomain of a matrix constructed as an
incomplete factorization of the Jacobian of the local domain.
Theory and application of Schwarz domain decomposition
methods for PDEs can be found in [13]. The coefficients for
the preconditioning operator are derived from a lower-order,
sparser and more diffusive discretization than that used for
f(u) itself. Applying any approximate subdomain solver in
an additive Schwarz manner tends to improve flop rates over
the same preconditioner applied globally, since the smaller
subdomain blocks maintain better cache residency, even apart
from concurrency considerations [14]. Combining a Schwarz
preconditioner with a Krylov iteration method inside an inexact
Newton method leads to a synergistic, parallelizable nonlinear
boundary value problem.

For purely elliptic problems, a single-level Schwarz pre-
conditioner does not weak-scale due to degraded convergence.
However, in applications, the convergence rate degradation
is often not as serious as the scalar, linear elliptic theory
would suggest. Its effects are mitigated using transient or
pseudo-transient nonlinear continuation, which parabolizes the
operator, given the diagonal dominance of the linear system to
be inverted. Multilevel preconditioners are often preferred over
single-level versions in aerodynamic and other applications;
however recent strong scaling tests out to 32,768 cores of
Yellowstone (29th-ranked in the Top500 at the time of writing)
of the closely related unstructured CFD code NSU3D have
shown that single-level solvers based on ILU-preconditioned
GMRES, as in this study, can beat their multilevel cousins
[15].

In the next section, we describe the main computational
kernels in the NKS Solver within FUN3D, and describe their
optimization challenges.

III. FUN3D MAIN KERNELS AND THEIR OPTIMIZATION

CHALLENGES

We look herein at the entire FUN3D application and at its
most time consuming Newton-Krylov loop, which consists of
the following four main types of kernels [3], [16]:

1) Edge-based "stencil op" loops: residual vector and Jacobian
matrix evaluation and Jacobian-vector products

2) Sparse, narrow-band recurrences: approximate factorization
and back-substitution

3) Vertex-based loops: state vector and auxiliary vector up-
dates

4) Global collectives: vector inner products and norms

The majority of the execution time is expected to be spent
in the edge-based loops (the "physics" of the application) and
the recurrences (mostly linear algebra). Our profiling of the
baseline code, described later in this paper, shows that these
operations together account for 95% of the overall execu-
tion time. The collectives typically have very little floating
point work and involve a logarithmically deep succession of

messages to traverse the subdomains of the partition. In the
distributed memory context, edge-based loops are bound by
the inter-node bandwidth if the latter does not scale with
the architecture. Inner products are bound by the inter-node
latency and network diameter. However, the shared-memory
challenges are different, and are described in the next section
for both edge-based loops and recurrences.

A. Edge-base loops

Edge-based "stencil op" loops: These loops predominantly
occur in residual vector (flux) calculation, Jacobian matrix
evaluation and Jacobian-vector products. Typically these loops
have color-wise concurrency and local communication to com-
plete the edges cut by the domain decomposition. A typical
edge-based loop is schematically shown in Figure 1, where
G is an arbitrary function. In FUN3D, these loops generate
significant computational work per pair of vertices the edge
operates upon, and comprise the majority of the floating-point
operations of the code. These contribute to the bulk of the
execution time. Therefore, these loops are one of the major
focus areas of our study, and we present a number of shared-
memory optimization techniques for these kernels later in this
paper.

The key optimization challenges for these kernels are:

1) Extracting thread- and SIMD-level parallelism in the pres-
ence of loop-carried dependencies, due to vertices shared
by multiple edges.

2) Exploiting SIMD-level parallelism in the presence of irreg-
ular memory accesses.

3) Reducing the problem working set to fit into the on-die
memory hierarchy.

With these overheads alleviated, these kernels are expected to
scale with available computational power.

for all Edges do
vertices forming the edge [v1, v2]
y[v1] + = G(V [v1], V [v2])
y[v2] + = G(V [v2], V [v1])

end for
Fig. 1: Edge-based loops

B. Sparse, narrow-band recurrences

Figure 2 schematically shows the sparse recurrences. The
recurrences have limited parallelism, proportional to the num-
ber of independent edges. Based on the nonzero pattern, we can
construct a task dependency graph of computing unknowns as
shown in Figure 3b. In the dependency graph, the computation
of each task roughly amounts to an inner product with length
equal to the number of non-zeros in the corresponding matrix
row. We can measure the parallelism available in a sparse
triangular matrix as the ratio of the total number of floating
point operations with the cumulative number of floating point
operations in the longest dependency path.
Input: factors L and U , RHS vector b
Output: solution vector x

// forward substitution
for i = 1,2,. . . ,n do

x(i) = b(i)− L(i, 1 : i− 1) ∗ [x(1), . . . , x(i− 1)]T

end for
Fig. 2: Sparse recurrences

725

Further, the flop/byte ratio for these recurrences are usually
low and these operations are expected to be bandwidth-bound.
The primary challenges with these operations are:

1) Extracting sufficient parallelism: This is a key challenge
since the available parallelism is limited by the number
of levels (or wave-fronts) in the task dependency graph.

2) Load imbalance and synchronization overhead: Irregu-
lar sparsity pattern can result in load-imbalance, while
limited parallelism can expose overhead of inter-core
synchronization.

The block-CSR storage format (BCSR) is used for Jacobian
matrix, with block size being the number of unknowns per
vertex (4 × 4). It has been shown that BCSR has significant
benefits, since it allows for coalesced loads (2 cache lines
per block), reduces the index computation, and also alleviates
the memory bandwidth pressure [2], [3]. The sparse matrix
operations in PETSc are further optimized − the factored
matrix is stored in the order it is accessed during the solve
step and the diagonal blocks are additionally inverted within
the ILU routine itself and then stored [17].

(a) Non-zero pattern of a
lower triangular sparse

matrix
(b) Corresponding dependency graph

of forward solve

Fig. 3: Sparse recurrences

IV. EXPERIMENTAL SETUP AND WORKLOAD

CHARACTERIZATION

In this section we describe our experimental platform, the
CFD datasets used, and the performance profile of the non-
optimized (baseline) FUN3D code.

A. Platforms Used for Experiments

For single node experiments we use a workstation with
two Intel Xeon E5-2690 v2 processors (each processor has 10
cores), running at a clock speed of 3.0 GHz. The architecture
features a super-scalar out-of-order micro-architecture support-
ing 2-way hyper-threading, resulting in the total of 20 hardware
threads. In addition to scalar units, it has 4-wide double-
precision SIMD units that support a wide range of SIMD
instructions through Advanced Vector Extensions (AVX) [18].
In a single cycle, they can issue a 4-wide double-precision
floating-point multiply and add, to two different pipelines.
This allows for achieving full hardware utilization even when
multiply and add can not be fused. Each core is backed by a 32
KB L1 and a 256 KB L2 cache, and all cores share an 24 MB
last level L3 cache. Together, the 10 cores can deliver a peak
performance of 240 Gflop/s of double-precision arithmetic
using AVX. The system has 64 GB DDR3 memory. It consists
of three channels running at 1600 MHz, which can deliver
42.2 GB/s of peak main memory bandwidth and STREAM
bandwidth of 34.8 GB/s.

Fig. 4: Surface mesh over the ONERA M6 wing

We ran our scaling experiments up to 256 nodes of the
Stampede supercomputer at the Texas Advanced Computing
Center (TACC). Each node consists of two Intel Xeon E5-2680
processors and are interconnected with Mellanox InfiniBand
FDR technology in a 2-level fat-tree topology. Each Intel
Xeon E5-2680 processor has eight cores (with Hyper-threading
disabled), with each core having 256KB private L1 caches and
shares a common 30MB data cache with all other cores. All
our experiments used the MVAPICH-1.9 MPI library and the
MPIP-3.0.3 profiling tool for generating MPI statistics.

B. CFD Datasets

We use the surface mesh over the ONERA M6 wing,
shown in Figure 4. This a classic CFD validation case for
external flows because of its simple geometry combined with
complexities of transonic flow [19]. It has almost become a
standard for CFD codes because of its inclusion as a validation
case in numerous CFD papers over the years.

For this geometry, we use two different meshes − the two
largest meshes of the 1999 study [2], previously referred to
as Mesh-C and Mesh-D (listed in Table I). Mesh-C with 2.4
million edges is representative of the problem size solved on a
single compute node and we have used this for all the single-
node experiments. Mesh-D is the larger mesh with close to
19 million edges, and we have used this for all the multi-node
experiments. The unstructured mesh used here requires explicit
storage of neighborhood information.

Mesh-C Mesh-D

Vertices 3.58e5 2.76e6
Edges 2.40e6 1.89e7

Time steps 13 29
Linear iterations 383 1709
Execution Time (s) 2.82e2 1.02e4

TABLE I: Baseline Performance

C. Baseline Performance Profile

As our baseline, we use the single threaded performance
the original PETSc-FUN3D code [2], [3], [20] compiled out-
of-the box and measured on the test platform. The reason for
using single threaded baseline was twofolds: 1. The out-of-
the-box code did not have threading included, and we have
included our threading strategies as one of the single-node

726

Fig. 5: Performance profile of Base Application

optimizations strategies evaluated in this paper, and 2. The
MPI-results are included in the multi-node results section
(Section VI.B). Table I lists the number of time steps, iterations
and the execution time to converge for the baseline code for
both Mesh-C and Mesh-D. Figure 5 shows the performance
profile of the baseline code on a single node. The primary
kernels and their contributions to the total execution time
are: flux computation (42%), triangular direct solver (TRSV /
Matsolve 17%), incomplete LU decomposition of the Jacobian
matrix (16%), gradient calculation (13%), and construction of
the Jacobian matrix (7%). These kernels together contribute
about 95% of the total execution time and hence are the
primary focus of the current work.

Having identified the kernels that constitute the compute
hotspots, in the next section we describe the key optimizations
and performance analysis for these kernels.

V. SHARED MEMORY KERNEL-LEVEL OPTIMIZATIONS

AND PERFORMANCE RESULTS

In this section, we describe various shared-memory opti-
mization strategies as well as kernel-wise optimizations. We
focus on edge-based loops and sparse recurrences, since these
are the computational patterns contributing to the majority of
the execution time.

A. Edge-based loops

The flux kernel is used as a representative example to
detail the optimizations for the edge-based loops. As seen from
the performance profile shown in Figure 5, the flux kernel
contributes a significant fraction of the execution time. The
edge-based loops are essentially stencil operations across each
edge, computing at vertices associated with an edge. Since
each vertex is involved in many discrete stencil operations,
this results in a fairly high ratio of work per data-size.

For the flux kernel this ratio is 9.4 flops per byte of
data accessed. This calculation traverses all the edges in a
subdomain, updating only the local vertices. Kaushik et al. [4]
have done initial evaluations of parallelizing the flux kernel
on the IBM Blue Gene/P machine, but this study was limited
to only 4 OpenMP threads per rank. The conclusion of this
work was that manual partition of the subdomain using METIS
[21] is the best approach to partition the processing of edges

across multiple threads. In the current work, in addition to re-
evaluating these claims for increased number of threads and we
have also evaluated alternative parallelization strategies as well
as explored SIMD parallelism, which is a critical optimization
on modern day multi- and many-core architectures. The vertex
numbering is reordered using Reverse Cuthill-McKee (RCM)
algorithm [22] to improve locality. Furthermore, the vertices
at one end of each edge are sorted in an increasing order to
make the access pattern more regular. Figure 6a shows the
speed-ups due to these optimizations on the flux kernel. As
seen from the figure, the performance of optimized flux kernel
is 20.6X over the base (sequential) code for 10 cores (20
threads). Figure 6b shows the scaling with number of cores for
different partitioning strategies. Since the edge-based loops are
predominantly compute-bound, the performance scales almost
linearly with the number of cores.

(a) Flux kernel: Speed-ups due to various opti-
mizations

(b) Flux kernel: Speed-ups with different par-
allelization strategies

Fig. 6: Performance results for flux kernel

The contribution of different optimizations to this overall
speedup is explained below.

• Threading: The edge-base loops have color-wise concur-
rency, i.e., edges that do not share the same vertices can be
processed in parallel. However coloring-based partitioning
of an unstructured mesh results in sub-optimal spatial lo-
cality among the concurrently processed edges [15]. Hence
we restrict ourselves to domain-decomposition based paral-
lelization strategies even within a node for edge loops. We
evaluate three different methods to extract parallelism. First,
we divide edges in natural order between threads and use

727

an atomic update to handle the dependency between threads
processing edges which share vertices. This strategy is
referred to as “Basic partitioning with atomics”. It can been
seen from Figure 6b that even though this strategy scales
almost linearly with the number of cores, the performance
is low. This is primarily due to the overhead of the atomic
update. We further divide the vertices also amongst the
threads (based on natural order) in addition to partitioning
the edges, with replication. For multiple threads handling
edges which share a vertex, only the thread which owns
that vertex is responsible for processing it (“owner-only
writes”). We refer to this strategy as “Basic partitioning with
replication”. This avoids write contention between threads
and hence the vertices can be updated without atomics. In
this case, as expected, the absolute performance is better
than with atomics but it doesn’t scale as well with increasing
number of cores. This can be attributed to the load imbalance
between threads and overheads due to replication. Due to
the replication of edges across partitions, there is significant
redundant compute; with 20 threads (10 cores) the natural
order based splitting of vertices results in a staggering 41%
increase in compute. Using METIS to partition the nodes
across the threads improves the balance of work between
threads and reduces the edge-replication across partitions.
This is referred to as “METIS based partitioning”. This
strategy, in addition to giving higher absolute performance,
also scales almost linearly with the number of cores. With
METIS, the overhead due to replication with 20 threads (10
cores) is reduced to a nominal 4%. Even with METIS, this
overhead is expected to be significant with increased paral-
lelism on emerging many-core architectures. For instance,
our initial experiments with 240 threads on a many-core
architecture indicate that this overhead becomes as high as
15%.

• Data structures: As each thread processes consecutive
edges, the accesses to the edge data is ordered and regular
(streaming). To facilitate better reuse and easier vectoriza-
tion, the edge data is stored as a Structure of Array (SoA)
data structure. Accessing the vertex data requires gathering
data from non-consecutive vertices associated with an edge.
However, within a vertex the variables (states, gradients,
geometric variables) are used almost successively and hence
the node data is stored as multiple Array of Structures (AoS)
data structures. That is, state variable are clubbed together
(nV ertices×4), the gradient in each of the three dimensions
for these state variables (nV ertices × 4 × 3) and then
geometrical values (nV ertices × 3). Regardless of which
format we use for node data, accesses to node data will
require irregular accesses and hence can not be done with the
vector load. For architectures without gather support, storing
data in SoA format results in issuing 4 sequential loads,
one per field, to fill an 8-wide SIMD register. However,
when node data is stored in AoS format, consecutive state
variables can be loaded into SIMD registers using a vector
load, one per node. Gathers can be performed via register
permutation out of the register file. Overall, AoS-based
approach requires fewer loads than SOA-based approach
and it better utilizes available issue ports, thus being more
efficient as well. Detailed cache analysis indicate that this
results in a 20% better reuse across L1 and L2 caches, which
translates into a 40% performance benefit (Figure 6a).

• Exploring SIMD: We vectorize across edges, with each

SIMD lane used for processing an edge entirely. Thus,
we have four edges being processed concurrently within
a thread. To address the possible dependency across these
edges, we separate the write-out part from the compute.
The dependency is eliminated for the compute, with the
computed values stored in a temporary buffer for each SIMD
width of edges. After the compute, we use scalar operations
to write out results from the temporary buffer. The perfor-
mance impact from the scalar write-out is minimal (less than
5%), since it is amortized by large amount of compute in
the flux kernel. With this restructuring of the kernel, the
code generated by the Intel auto-vectorizing compiler is
comparable to the hand-coded SIMD intrinsics. However,
we observe that the auto vectorization performs slightly
better, because the compiler generates more optimized code
for gathers (node-data). Overall, SIMD-optimization result
in a 40% improvement in performance (Figure 6a).

• Software Prefetching: Since this is an unstructured mesh, the
sequence of nodes associated with successive edges does not
follow a regular order. However the nodes associated with
each mesh are known a priori. We use this information
to prefetch the node and edge data for successive edges
using software prefetch instructions to both L1 and L2
caches. With careful tuning of these prefetch instructions
the execution time reduces by 28% which translates into a
15% performance benefit (Figure 6a).

B. Sparse, narrow-band recurrences

Incomplete LU (ILU) decomposition and triangular solver
(TRSV) are the two important kernels under this category.
Figure 7a shows the speed-ups achieved for these kernels
with different optimization strategies, and Figure 7b shows
the performance in terms of achieved bandwidth for different
parallelization strategies.

The ILU decomposition of the Jacobian matrix is done
once every time step in our tests. (Reusing the factors even
as the Jacobian evolves underneath is a problem-dependent
optimization that is worth pursuing in practice.) The iterative
solver uses the factored matrix as a preconditioner every linear
iteration. With optimization the ILU kernel achieves a speedup
of 9.4X and the sparse triangular solver a speed up of 3.2X
with 10 cores (20 threads) over the base (sequential) code.
Both these kernels are bandwidth-bound owing to low flop/byte
ratio. The (sparse) Jacobian matrix is constructed as a blocked-
diagonally dominant matrix with 4×4 blocks and uses the BSR
sparse representation.

For TRSV described in Figure 2, the primary compute is
multiplying a 4× 4 matrix with a 4× 1 vector for each non-
zero block. There is no reuse across blocks (streaming access).
The TRSV kernel achieves 94% of the STREAM bandwidth
on a single node with 20 threads (10 cores), as shown in
Figure 7b. We observe that the bandwidth starts to saturate
beyond 4 cores.

The ILU factorization involves higher compute, since for
each block, the non-zero blocks in that particular row/column
prior to it need to processed [23]. The primary computation
here is a 4 × 4 matrix-matrix multiplication and inversion of
the diagonal block for each row. Here the performance scales
up to 8 cores, beyond which the kernel is bandwidth-bound.

728

(a) Performance Optimizations

(b) Parallelization strategies

Fig. 7: ILU and TRSV

The access pattern with this kernel is non-regular and hence
achieved bandwidth efficiency is not as high the TRSV kernel.

The available parallelism is limited with these recurrences.
We evaluate the following two strategies to extract the paral-
lelism for these operations: (1) Level-scheduling with barriers:
executes task graphs in the granularity of levels, with barrier
synchronization after each level. The level of a task is defined
by the longest path length between the task and an entry
of the task dependency graph. Since tasks in the same level
are independent, they can execute in parallel [24], [25]. This
has issues of load imbalance across threads since amount of
work with successive levels tends to decrease drastically. (2)
Sparsification with approximate transitive edge reduction (P2P-
Sparse) by Park et al. [26], which sparsifies (i.e., eliminates)
the redundant dependencies with point-to-point synchroniza-
tion and improves scalability. Even though these techniques
have been applied primarily for the sparse triangular solver,
they are also applicable to the ILU since both these operate
on same sparsity pattern.

• Threading: Figure 7b compares the performance of both the
ILU and TRSV kernels with the two parallelizing strategies
of Level scheduler and P2P-Sparse. Clearly the sparsifi-
cation of synchronization approach performs better both
in terms of absolute performance and also scaling across
cores for both the kernels. With increasing parallelism,

the benefit from the sparsification approach is expected to
further increase.

• Algorithmic optimization: The ILU decomposition requires
maintaining a temporary buffer typically the size of number
of rows to store the partial results for each row. With general
sparse matrices the number of rows/columns accessed for
processing each row is orders of magnitude smaller than the
total number of rows, even though distance between these
rows/columns might be much higher. The large temporary
buffer not only results in increased access stride, but also
in increased working set with threading. We circumvent
this issue by using a static access information to map the
accesses to a reduced (compressed) temporary buffer. Again,
this becomes critical with higher number of threads.

• Exploring SIMD: The key computations are with small
(4 × 4) matrices and vectorization is done within a block.
To be able to effectively utilize the available SIMD units,
we manually vectorize these operation with vector intrinsics.
Since these kernels are primarily bandwidth-bound, the per-
formance benefits with vectorization are not very significant.

VI. FULL APPLICATION PERFORMANCE RESULTS FOR

SINGLE- AND MULTIPLE NODES

In this section we describe the single- as well as multi-
node performance results for the FUN3D application. We
have retained all the single-node optimizations – interlacing,
blocking and reordering – previously used by W. Gropp et al.
[3] for the FUN3D code. In addition, we combined all our
kernel-wise optimizations described in the previous section.

A. Single Node results

Figure 8a shows the "time to solution" comparison for the
single-node optimized code with the base sequential code. We
achieve a 6.9X speedup for the full application on Intel Xeon
E5 2690 processor (10 cores). The figure also shows speed-ups
achieved for various kernels.

The edge-based loops are expected to be compute bound
and we see this behavior with the flux, Grad and Jacobian
kernels, with the performance scaling (almost) linearly with
the number of cores. For the flux kernel, which is the primary
compute hot-spot, the additional optimizations result in 2X
performance benefit. Whereas the sparse triangular solver
(TRSV) and ILU are bandwidth-bound and scales only with
the bandwidth utilization per core.

The sparse triangular solver (TRSV) becomes the primary
hot-spot post-optimization. Owing to the fact that this is
bandwidth-bound, the speedup efficiency for the full applica-
tion is limited to 69% (6.9X on 10 cores). With the contri-
bution of the optimized primary kernels dropping, the ‘other’
auxiliary operations become quite significant, contributing to
about 30% of execution time. Of the remaining operations, the
major contribution is from the vector primitives (VecMAXPY,
VecWAXPY, VecMDOT, etc.) and the vector scatter operations
(VecScatter), which are PETSc native functions. We have
further optimized the vector primitives by either replacing
them with our own optimized (multi-threaded, vectorized)
implementations or using the corresponding MKL functions.

Since our optimizations are all performed within the PETSc
framework, it allows seamless use of the plethora of algo-
rithms available in PETSc. For example, we evaluated our

729

(a) Optimized PETSc-FUN3D Performance

(b) Kernel-wise performance speedup

Fig. 8: Optimized FUN3D application

optimizations for preconditioner with fill-in and compared the
performance for preconditioner without fill-in, and studied
their parallelization potentials and performance gains.

The original version of the PETSc-FUN3D for the Schwarz
preconditioner uses an incomplete LU decomposition with fill
level of 1 (ILU-1) for the Jacobian matrix. This was found
to be optimal from the algorithm perspective [23], [27], as it
offers faster convergence than the ILU without fill-in (ILU-
0). The previous study was limited to considering the trade-
off due to increase in work with fill-in and reduction in
number of iterations to converge. Level of fill-in also affects
the available parallelism. As described in section III, the
parallelism is measured as the ratio of total number of floating
point operations by the cumulative number of floating point
operations in the longest dependency path of a task dependency
graph based on the non-zero pattern. With increase in non-
zeros with fill-in the available parallelism drastically reduces.

Table II compares the amount of parallelism, number of
iterations to converge, and the speed-up on 10 cores for
FUN3D application using ILU-0 and ILU-1. As seen from
the table, ILU-1 offers faster convergence but it offers less
parallelism, and this characteristic shows interesting results
when parallelized to 10 cores. Due to more inherent parallelism
in ILU-0, although it takes more iterations to converge, it starts
scaling better with the number of cores, and at 10 cores, ILU-0
outperforms ILU-1 by about 1.3X.

Mesh-C
ILU-0 ILU-1

Available parallelism 248X 60X
Linear iterations 777 383
Execution Time (s) on single core 430 282
Execution Time (s) on 10 cores 62 81
Speed-up over single core 6.9X 3.5X

TABLE II: Comparison of ILU-0 and ILU-1 for parallelism and
performance

B. Multi-node Results

There are two primary objectives for this section. The first
objective is to demonstrate that the shared memory optimiza-
tions presented in the previous section continue to provide
similar performance benefits as we scale to larger number of
nodes. Our second objective is to characterize Krylov solvers
for their scaling properties and establish the scaling limits.
Further, we examine benefits of thread-level parallelism within
a node.

1) Scaling studies with cache and SIMD optimizations:
Here, we compare the results of the baseline PETSc version
against an optimized version with the cache- and SIMD-
optimizations included, in a strong scaling experiment. The
specific versions used are labeled as: Baseline code running
sixteen MPI processes per node (one per core), Optimized code
running sixteen MPI processes per node (one per core) with
cache- and SIMD-optimizations.

Figure 9 shows the execution times for the FUN3D ap-
plication as we scale it to 256 nodes of the Stampede super-
computer at TACC. The figure shows that cache- and SIMD-
optimizations result in higher performance compared to the
baseline version. This performance benefit is seen at all scales,
with the execution time speedups ranging from about 16%
to about 28%. Thus, it is clear that the cache- and SIMD-
optimizations we discussed in this paper are essential for
improving the performance and continue to give benefit as we
scale the application to multiple nodes.

Fig. 9: Scaling of FUN3D application to 256 nodes

2) Characterization of Krylov solvers scaling on multi-
node: As we increase the number of nodes, communication
starts to dominate the performance and the largest mesh
(Mesh-D) becomes communication bound at 256 nodes (with
communication time being 70% of the total execution time).
The majority (90%+) of the communication overhead is due to
the MPI_Allreduce operations in the Krylov solver. Point-to-
point messages contribute less than 5% of the communication
overhead. The datasets used in [2] become communication

730

bound much sooner, as early as 256 nodes on current highly
parallel architectures. Further, with special HW support for
global collectives as in the IBM Blue Gene/P machine, the
same dataset (Mesh-D) scales only up to 1024 nodes [4].
The global collectives which are inherent to the Krylov solver
become the primary scaling bottleneck, thereby limiting its
applicability at large scales. There are recent algorithmic
developments [28], [29] to circumvent this limitation. We are
further evaluating these improved Krylov solvers as future
work.

Fig. 10: Communication overheads in scaling of FUN3D

3) Thread-level parallelism studies: Modern architectures
are trending towards multi- and many-cores, offering an in-
creasing degree of thread-level parallelism within each node.
Therefore, it is imperative for any large-scale application to
exploit this multi-level parallelism. In this study, we use a
hybrid OpenMP+MPI strategy to exploit this parallelism, and
examine whether our shared-memory optimizations continue
to give benefits as we scale.

Fig. 11: Baseline, Optimized and Hybrid versions scaled to 256 nodes

Figure 11 shows the comparison of execution times and
speedups of the "Baseline" (Section VI-B1), "Optimized with
cache- and SIMD-optimizations" (Section VI-B1), and "Hy-
brid" version. The "Hybrid" version is defined as "PETSC
FUN3D code with all shared memory optimizations (cache,
SIMD, threading) enabled running two MPI processes per node
(one per socket), with each MPI processes using eight threads
(one per core)". While Optimized and Hybrid include the
same SIMD and cache optimizations, the difference is that the
"Hybrid" version additionally includes threading optimizations
and hence they have different number of threads per rank and
number of ranks per socket.

The Hybrid version performs better than the Baseline
by around 10% to 23%. This demonstrates the performance
benefits of cache, SIMD, and threading optimizations. How-
ever, these benefits are lower than that those obtained by the
"Optimized" version (i.e., MPI-only with cache- and SIMD-

optimizations). The coarse-grained explicit parallelization of
the MPI-only implementation parallelizes most portions of the
PETSc library routines, while the Hybrid version introduces
thread-level parallelism only for the FUN3D kernels. This lack
of thread-level parallelism within the PETSc library for cer-
tain vector and communication primitives (such as VecNorm,
VecMDot, VecScatterEnd) increases the Amdahl’s fraction for
the "Hybrid" case. However the MPI-only parallelization poses
its own set of challenges/limitations – increase in the number
of sub-domains results in the degradation of the convergence
properties due to the reduced coupling and we observe up
to 30% increase in iterations at 256 nodes and increased
pressure on the resources within a node. Hence, with increased
parallelism within a node we expect the "Hybrid" version
to perform better. Therefore, our call to the PETSc develop-
ment community is to optimize/parallelize the native routines,
which would enable better utilization of modern architectures
with higher degree of thread-level parallelism. Pending these
optimizations, our analysis shows that using our cache- and
SIMD-optimization together with MPI-only implementation is
the fastest of the three examined approaches.

VII. CONCLUSIONS AND FUTURE WORK

Computational aerodynamics is an important workload
for high performance computing, and is often used as a
representative workload in benchmarking and tuning hardware
and software programming environments. Most of the past
work by the scientific community in the space of scaling
of CFD applications has been focused on weak scaling to
tens of thousands of processors, and corresponding distributed-
memory optimizations. With the advent of modern multi-
and many-core processors with high degree of fine-grained
thread parallelism available within a single shared-memory
node, practitioners are now forced to look to strong scaling
with the advent of massive thread parallelism within a single
shared-memory node. In this work, we present analysis and
optimization of an incompressible implicit flow solver on
modern parallel systems. We study the flow over an aircraft
wing geometry meshed using unstructured grid. Unstructured
grids pose further challenges to optimization primarily due to
the severe lack of spatial locality and highly nonuniform access
patterns.

We chose the well characterized application PETSc-
FUN3D as our case study application. We demonstrate several
optimization techniques for shared-memory systems, including
threading, data structure optimizations, vectorizations, soft-
ware prefetching, etc. We break the application down into
various kernels as well as computational patterns such as
edge-based loops and sparse recurrences, and demonstrate
optimizations for these characteristics patterns. Our results
from aerodynamics should bear on PDE-based workloads from
reservoirs, geophysics, materials processing, solid mechan-
ics, reacting flows, magnetohydrodynamics, and many other
temporally stiff problems posed on geometrically irregular or
adaptively refined domains, which shares many of the key
algorithmic characteristics with our PETSc-FUN3D code.

Our optimizations show a 6.9X speed-up in performance on
a single node Intel Xeon E5 2690 processor (10 cores) relative
to out-of-the-box compilation. Further, we also perform scaling

731

studies on multi-node clusters and show that our shared mem-
ory optimizations continue to provide performance benefits as
we scale to larger number of nodes. Our experiments on 256
nodes Stampede supercomputer at Texas Advanced Computing
Center (TACC) show that cache- and SIMD-optimizations
result in higher performance at all scales, compared to the
baseline case without these optimizations.

Most of our shared-memory optimizations are expected
to extend to modern many-core architectures such as Intel R©
Xeon Phi

TM
Coprocessor architecture. Thus, this work is the

precursor for our ongoing work to study the implication of
increasing parallelism within a single node with emerging
multi- and many-core architectures. Our work has shown
that certain library routines in PETSc (for example, vector
primitives) are not thread-level parallelized, and these become
bottlenecks preventing PETSc from exploiting full benefits
for multi-level parallelism available in today’s architecture.
Optimizations of these routines by the PETSc community
would have a major impact on performance gains on modern
multi- and many-core architectures.

In future, we plan to optimize FUN3D on many-core
architectures, and also study the multi-node scaling charac-
teristics on a much large cluster of several thousands of
nodes, and using much larger data sets including a full aircraft
configuration (including the fuselage).

ACKNOWLEDGMENT

The authors would like to thank Jed Brown, Barry Smith, Matt
Knepley, Hong Zhang and others from the PETSc team for their
support. The authors acknowledge the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin for providing
HPC resources that have contributed to the research results reported
within this paper. The authors would also like to thank Prof. Juan
Alonso of Stanford University for his help in proof-reading this paper.

REFERENCES

[1] A. C. Duffy, D. P. Hammond, and E. J. Nielsen, “Production level
CFD code acceleration for hybrid many-core architectures,” NASA/TM-
2012-217770, October, Tech. Rep., 2012.

[2] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F.
Smith, “Achieving high sustained performance in an unstructured mesh
CFD application,” in Supercomputing. ACM, 1999, p. 69.

[3] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “High-
performance parallel implicit CFD,” Parallel Computing, vol. 27, no. 4,
pp. 337–362, 2001.

[4] D. Kaushik, D. Keyes, S. Balay, and B. Smith, “Hybrid programming
model for implicit PDE simulations on multicore architectures,” in
OpenMP in the Petascale Era. Springer, 2011, pp. 12–21.

[5] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
K. Rupp, B. F. Smith, and H. Zhang, “PETSc Web page,” 2014.
[Online]. Available: http://www.mcs.anl.gov/petsc

[6] ——, “PETSc users manual,” Argonne National Laboratory, Tech.
Rep. ANL-95/11 - Revision 3.4, 2013. [Online]. Available:
http://www.mcs.anl.gov/petsc

[7] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[8] W. K. Anderson and D. L. Bonhaus, “An implicit upwind algorithm
for computing turbulent flows on unstructured grids,” Computers and
Fluids, vol. 23, pp. 1–21, 1994.

[9] W. K. Anderson, R. D. Rausch, and D. L. Bonhaus, “Implicit/multigrid
algorithms for incompressible turbulent flows on unstructured grids,”
Journal of Computational Physics, vol. 128, pp. 391–408, 1996.

[10] P. Roe, “Approximate Riemann solvers, parameter vectors, and differ-
ence schemes,” Journal of Computational Physics, vol. 43, pp. 357–372,
1981.

[11] W. Mulder and B. Van Leer, “Experiments with implicit upwind
methods for the Euler equations,” Journal of Computational Physics,
vol. 59, pp. 232–246, 1985.

[12] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton-Krylov methods:
A survey of approaches and applications,” Journal of Computational
Physics, vol. 193, pp. 357–397, 2004.

[13] A. Toselli and O. B. Widlund, Domain Decomposition Methods: Algo-
rithms and Theory. Springer, 2005, Springer Series in Computational
Mathematics, vol. 34.

[14] G. Wang and D. K. Tafti, “Performance enhancements on micropro-
cessors with hierarchical memory systems for solving large sparse
linear systems,” International Journal for High Performance Computing
Applications, vol. 13, pp. 63–79, 1999.

[15] D. Mavriplis and K. Mani, “Unstructured mesh solution techniques
using the NSU3D solver,” 2014, aIAA Paper 2014-0081, Presented at
the 52nd AIAA Aerospace Sciences Conference, National Harbor, MD.

[16] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “Perfor-
mance modeling and tuning of an unstructured mesh CFD application,”
in Supercomputing, ACM/IEEE 2000 Conference. IEEE, 2000, pp.
34–34.

[17] B. Smith and H. Zhang, “Sparse triangular solves for ILU revisited:
data layout crucial to better performance,” International Journal of
High Performance Computing Applications, vol. 25, no. 4, pp. 386–
391, 2011.

[18] “Intel R© architecture instruction set extensions programming reference,”
2014.

[19] V. Schmitt and F. Charpin, “Pressure distributions on the ONERA-M6
wing at transonic mach numbers,” Experimental data base for computer
program assessment, vol. 4, 1979.

[20] S. Bhowmick, D. Kaushik, L. McInnes, B. Norris, and P. Raghavan,
“Parallel adaptive solvers in compressible PETSc-FUN3D simulations,”
in Proceedings of the 17th International Conference on Parallel CFD,
2005.

[21] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[22] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th national conference. ACM,
1969, pp. 157–172.

[23] E. Chow and Y. Saad, “Experimental study of ILU preconditioners for
indefinite matrices,” Journal of Computational and Applied Mathemat-
ics, vol. 86, no. 2, pp. 387–414, 1997.

[24] E. Anderson and Y. Saad, “Solving sparse triangular linear systems on
parallel computers,” International Journal of High Speed Computing,
vol. 1, no. 01, pp. 73–95, 1989.

[25] M. Naumov, “Parallel solution of sparse triangular linear systems in
the preconditioned iterative methods on the GPU,” NVIDIA Technical
Report, NVR-2011-001, Tech. Rep., 2011.

[26] J. Park, M. Smelyanskiy, and P. Dubey, “Sparsifying synchronizations
for high-performance shared-memory sparse triangular solver,” in In-
ternational Supercomputing Conference (ISC), 2014.

[27] A. Chapman, Y. Saad, and L. Wigton, “High order ILU preconditioners
for CFD problems,” UMSI research report/University of Minnesota
(Minneapolis, Mn). Supercomputer institute, vol. 96, p. 14, 1996.

[28] P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose, “Hiding
global communication latency in the GMRES algorithm on massively
parallel machines,” SIAM Journal on Scientific Computing, vol. 35,
no. 1, pp. C48–C71, 2013.

[29] L. C. McInnes, B. Smith, H. Zhang, and R. T. Mills, “Hierarchical
Krylov and nested Krylov methods for extreme-scale computing,”
Parallel Computing, vol. 40, no. 1, pp. 17–31, 2014.

732

